Skip to content

Materials

This section provides a practical overview of the material models available in Comfor. For detailed theoretical background, refer to the Theory section.

Available material models#

Common parameters for all materials#

Parameter Description Required
material_name Custom name for the material. Yes
RHO Mass density of the material. Yes
DAMPING Mass proportional damping No

Elastic models#

Elastic materials in Comfor are modeled using the Saint-Venant-Kirchhoff constitutive law, suitable for small strains and large rotations.

Key parameters

  • E: Young's modulus
  • NU: Poisson's ratio

Example

MATERIALS TYPE ELASTIC
<material_name> RHO = <mass_density> DAMPING = <damping_value> E = <young_modulus> NU = <poissons_ratio>

Hyperelastic models#

Hyperelastic models are used for materials undergoing large deformations, such as rubber or textile composites.

Ogden model#

  • Suitable for isotropic hyperelastic materials (e.g., rubber, membranes).
  • Requires parameters: MU (shear moduli) and ALPHA (dimensionless exponents).

Example

MATERIALS TYPE HYPERELASTIC
<material_name> RHO = <mass_density> DAMPING = <damping_value> TYPE = OGDEN MU = <mu_1, mu_2, ...> ALPHA = <alpha_1, alpha_2, ...>

Note

The number of MU and ALPHA parameters must be equal.

Composite#

  • Designed for anisotropic textile materials(e.g., woven composites).
  • Requires orientation parameters for warp/weft directions and stiffness coefficients.

Key parameters

  • WARPORI: Initial warp orientation (vector: l1_x, l1_y, l1_z).
  • WEFTORI: Initial weft orientation (vector: l2_x, l2_y, l2_z).
  • KELONGWARP, KELONGWEFT, KSHEAR: Stiffness coefficients for elongation and shear.

Example

MATERIALS TYPE HYPERTEXTILE
<material_name> RHO = <mass_density> DAMPING = <damping_value> WARPORI = <l1_x, l1_y, l1_z> WEFTORI = <l2_x, l2_y, l2_z> KELONGWARP = <k1, k2, ...> KELONGWEFT = <k1, k2, ...> KSHEAR = <k1, k2, ...>

Choose a material model#

  • Use Elastic for small strain applications (e.g., tools).
  • Use Hyperelastic for finite strain for isotropic materials (e.g., rubber, membranes).
  • Use Textile Composite for anisotropic woven materials.

For advanced use cases, refer to the Theory section.